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Abstract

As the volume of academic publications across all disciplines continues to grow, researchers
face the challenge of effectively exploring literature relevant to their fields. Addressing
this, we propose a semi-unsupervised method to classify papers into a structured ontology,
enabling easier navigation and more efficient topic investigation. Our process involves four
key steps: 1) key phrase extraction from a corpus of academic papers; 2) merging similar key
phrases; 3) developing taxonomic relations among the merged concepts; and 4) establishing
non-taxonomic relations to augment the conceptual graph. Our study extends an existing key
phrase extraction technique and introduces novel strategies for concept merging and hierarchy
development. The final phase incorporates a modified version of the SciCero method for
developing non-taxonomic relationships between concepts, thereby enhancing the overall
effectiveness and utility of our proposed system.
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Kurzfassung

Da das Volumen wissenschaftlicher Veröffentlichungen in allen Disziplinen weiterhin wächst,
stehen Forscher vor der Herausforderung, relevante Literatur in ihren Fachbereichen ef-
fektiv zu erkunden. Um diesem Problem entgegenzuwirken, schlagen wir eine teilweise
unüberwachte Methode zur Klassifizierung von Papieren in eine strukturierte Ontologie
vor, um eine einfachere Navigation und effizientere Themenuntersuchungen zu ermöglichen.
Unser Prozess umfasst vier wesentliche Schritte: 1) Extrahierung von Schlüsselphrasen aus
einem Korpus wissenschaftlicher Arbeiten, 2) Zusammenführung ähnlicher Schlüsselphrasen,
3) Entwicklung taxonomischer Beziehungen zwischen den zusammengeführten Konzepten
und 4) Herstellung nicht-taxonomischer Beziehungen zur Erweiterung des konzeptionellen
Graphen. Unsere Studie erweitert eine bestehende Technik zur Extrahierung von Schlüs-
selphrasen und führt neuartige Strategien zur Konzeptzusammenführung und Hierarchieen-
twicklung ein. Die abschließende Phase beinhaltet eine modifizierte Version der SciCero-
Methode zur Entwicklung nicht-taxonomischer Beziehungen zwischen Konzepten, wodurch
die Gesamtwirksamkeit und Nützlichkeit unseres vorgeschlagenen Systems verbessert wird.
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1 Introduction

According to a report generated in 2018 by International Association of Scientific, Technical,
and Medical Publishers (STM), there exists a 4% yearly growth rate in articles and a 5% yearly
growth in journals were observed. More current data demonstrates that these growth rates
continue to increase [1].

With the ever-expanding purview of available research studies and documents becoming
available, the discoverability of such papers has become challenging. As the rate of scientific
publications is increasing with time, many publications with relevant topics could be omitted
from a simple search due to a difference in terminology.

A better means of sorting through and finding relevant research topics rather than through
traditional keyword searches would be a helpful tool for researchers to utilize. A domain-
specific ontology would satisfy this issue, providing a search through semantic understanding
of a requested topic. Researchers could also utilize this ontology to explore direct relations to
the queried topic, as well as discover new avenues for research.

One advantage is the idea of employing ’concepts’ in the ontology, which are an aggre-
gate of different topics in Natural Language Processing (NLP) that have the same semantic
meaning. Users could search for their requested topic without having to know exact keywords.
Instead, if a user is searching for ’emotion recognition’ or ’sentiment analysis’, they are routed
to the same topic, and can gain an understanding of the different variations of a concept that
can exist in various publications.

Another advantage is the hierarchical nature of the ontology. Users don’t need an in-depth
understanding of a topic in order to see under which umbrella of NLP it exists. Instead,
they only need to traverse up the hierarchy. And similarly (flipside), if a user is unsure what
detailed concepts exist under different areas of NLP, they can simply explore the taxonomic
relations of the ontology to retrieve ancestors or descendants of a concept.

And finally, an ontology offers more than just the hypernym-hyponym relations one finds
in a taxonomy. An ontology allows the user to explore a multitude of ways that a concept
affects any other concept in the hierarchy. For a topic of their interest, they can peruse which
concepts utilize it, replace it, affect it, and a plethora of other possible information about the
ripple effects of a concept in the field of NLP.

Unfortunately, if one were to try and construct an ontology of NLP topics by hand, it
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1 Introduction

would take a considerable amount of time and repetitive labor. In addition, such a task could
only be feasibly done by those with sufficient knowledge of the field such as NLP experts
and researchers, and it would require a large number of them too. Therefore, we propose a
semi-unsupervised approach to learn the ontology automatically.

Figure 1.1: Flowchart showing the step by step process of building an ontology out of a
corpus of scientific publication, as inspired by Asim et al. [2].
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1 Introduction

We aim to build off the work of a previous master’s thesis to expand on what has been
defined [3]. The aforementioned thesis provides a solid foundation for keyphrase extraction
and filtering from a corpus of research documents about Natural Language Processing. It
also presents methods for concept clustering and the formation of hierarchical relationships
between these concepts. This paper continues to improve on the ideas presented to build a
high quality automated ontology of NLP concepts.

The main task is this: How do we deepen the hierarchical relationships between research
concepts? To answer, we delve into more specific challenges that need investigating:

• How to use manual refinement to improve top-level navigation for users?

• How to enhance the existing concepts and relations through automated refinement
approaches?

• How to transition from a taxonomy to an ontology with more complex relations?

Our thesis aims to answer these questions by investigating the different subtasks that, together,
create a pipeline for constructing an ontology from a corpus of abstracts and titles. The idea
of layering the different steps for ontology creation from unstructured text is described by
Asim et al. [2], who provide a helpful overview of the ontology creation pipeline.

This thesis is structured in the following way: Chapter 2 delves into the technical foun-
dations of this research by providing some background knowledge on different terms or
concepts that will be referred to and explored throughout the other chapters. Chapter 3
provides an overview of different available literature that delve into a very similar topic to
this one, but that aren’t necessarily utilized or referenced for our own implementation of
this process. Chapter 4 explores the different methodologies employed by this thesis and
explains our implementation in detail. Chapter 5 presents the results of our methodologies
after evaluating our processes. Chapter 6 summarizes the work and discusses its results, and
Chapter 7 showcases avenues for improvement and for future work that can be continued
following this thesis.
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2 Technical Foundation

The upcoming sections will provide an overview of key technical terms used in this thesis.
Additionally, a brief discussion will be provided on the selected Part-of-Speech tagger.

2.1 Terms in Text Processing

WordNet is a widely utilized lexical database and semantic network in the fields of natural
language processing and computational linguistics. Its purpose is to organize words and
their meanings into synsets, which are sets of synonymous words [4]. With its expansive
collection of word relationships, including hypernymy, hyponymy, meronymy, and entail-
ment, WordNet facilitates the exploration of semantic connections between words. It serves
as a valuable resource for tasks such as word sense disambiguation, information retrieval,
and ontology construction [4]. Researchers and developers heavily rely on WordNet due
to its comprehensive coverage and its significant contributions to various language-related
applications.

Natural Language Toolkit (NLTK) is a widely used open-source Python library for Natu-
ral Language Processing (NLP) tasks [5]. It provides a broad range of features, such as
tokenization, Part-of-Speech tagging, and syntactic parsing. With its extensive collection of
corpora, lexicons, and algorithms, NLTK serves as a valuable resource for NLP research,
experimentation, and development [5]. Its intuitive interface and detailed documentation
make it a preferred choice for both novice and experienced NLP practitioners and researchers.
Additionally, NLTK’s active community ensures ongoing support and updates for the library.

SpaCy is a popular Python library for natural language processing. It is known for its
efficiency, simplicity, and extensive features [6]. With its pre-trained models, SpaCy enables
tasks such as tokenization, Part-of-Speech tagging, named entity recognition, and dependency
parsing. It also supports various language models and provides word vector representations.
SpaCy’s user-friendly interface and extensive documentation make it a preferred choice
for NLP practitioners and researchers. It offers seamless integration with popular deep
learning frameworks like TensorFlow and PyTorch, allowing for easy incorporation of custom
models. It provides efficient pipeline processing, allowing users to apply multiple NLP tasks
in a single pass. The library also includes powerful visualization capabilities for analyzing
linguistic features and dependencies [6]. SpaCy’s open-source nature encourages community
contributions and enables continuous improvement. It has gained widespread adoption in
both academia and industry, serving as a reliable tool for various NLP applications and
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2 Technical Foundation

research projects.

Taxonomy is a scientific discipline that classifies and categorizes entities into hierarchical
structures [7]. Taxonomy plays a significant role in NLP by providing a structured framework
for organizing and categorizing linguistic elements. In NLP, taxonomies can be used to
classify and categorize text data based on various criteria, such as topic, sentiment, or intent.
By leveraging taxonomy, NLP models can achieve better accuracy and efficiency in tasks like
text classification, information retrieval, and entity recognition [8]. Additionally, taxonomies
can facilitate the development of ontologies, which aid in knowledge representation and
semantic understanding within NLP systems. Overall, taxonomy serves as a valuable tool
in NLP for organizing and analyzing textual information, enabling more effective language
processing and understanding.

Ontology in NLP involves creating a structured representation of knowledge in a domain, clar-
ifying concepts, and enabling effective communication [9]. It enhances system interoperability,
offering benefits like reusability and reliability . Ontologies can be formal or informal, encom-
passing elements such as concepts, relations, axioms, and instances. Constructing an ontology
involves analyzing the domain, defining terms, and establishing conceptual connections. It
combines contributions from philosophical and AI ontologists for foundational aspects and
domain experts for domain-specific knowledge. However, populating the ontology with
specific concepts while maintaining consistency can present challenges [9]. Overall, ontology
in NLP plays a crucial role in reducing conceptual confusion, fostering shared understanding,
and facilitating information exchange and collaboration.

Part-of-Speech (PoS) tagging is a key NLP task that assigns grammatical labels to words,
aiding in sentence understanding and enabling diverse NLP applications [10]. It helps extract
information, recognize named entities, translate text, perform sentiment analysis, and more.
PoS tagging provides essential linguistic details for disambiguation and determining word
roles. It enhances NLP models’ ability to analyze and process text effectively. For the purposes
of this thesis, we use the Stanford CoreNLP [10, 11] NLP toolkit which boasts a comprehensive
suite of tools for various tasks like PoS, named entity recognition, dependency parsing, and
sentiment analysis. It integrates state-of-the-art models and offers seamless integration of
multiple NLP tasks [10, 11].

Dependency parsing is an NLP technique that analyzes sentence structure by identifying
syntactic relationships between words [12]. It represents these relationships as labeled edges
in a parse tree, capturing grammatical roles and dependencies. It aids tasks like informa-
tion extraction and machine translation by disambiguating word meanings and capturing
grammatical relationships. Various algorithms and machine learning models are used for
parsing, trained on annotated data to optimize accuracy. Dependency parsing is vital for
understanding word relationships and enabling deeper linguistic analysis in NLP applications
[12].
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2 Technical Foundation

2.2 Mathematical Implementations of Text Processing

2.2.1 Word Embeddings

Word embeddings are compact representations of words that capture their semantic and
syntactic features. Derived from large text datasets, they enable machines to understand
and process language by capturing word relationships. Widely applied in natural language
processing, word embeddings enhance tasks such as language modeling and sentiment
analysis. According to authors Liu et al., a text corpus, represented as a sequence S of tokens
(t1, t2, ..., tN), is considered [13]. Each token ti is associated with a dense feature vector hti ,
forming distributed representations of words. On the one hand, global word embedding
matrix E ∈ RV×d, is learned in traditional word embedding techniques, where each row ei
corresponds to the global embedding of a word type i in the vocabulary V. Two well known
models that follow traditional word embedding techniques are Word2vec [14] and GloVe [15].

On the other hand, contextual embedding methods involve associating each token ti with a rep-
resentation hti that depends on the entire input sequence S, expressed as hti = f (et1 , et2 , ..., etN ),
where etj represents the non-contextualized representation of the input token tj, and f denotes
an aggregation function. Context-dependent representations, which capture sequence-level
semantics effectively and handle polysemy, are obtained [13].

2.2.2 Cosine Similarity

Cosine similarity is a widely adopted metric in NLP that enables the comparison of similarity
between two vectors [16]. By calculating the cosine of the angle formed between the vectors,
cosine similarity captures the alignment of their directions. This metric is derived from
the dot product, also known as the inner product, which serves as a similarity measure in
linear algebra. The dot product acts as a similarity metric because it tends to yield higher
values when the two vectors exhibit large values in the same dimensions [16]. Conversely, if
vectors have zeros in different dimensions or are orthogonal, the dot product evaluates to 0,
indicating their significant dissimilarity. Suppose our two vectors a and b are N-dimensional,
their dot product would then be:

dot product(a, b) = a · b =
N

∑
i=1

aibi = a1b1 + a2b2 + ... + aNbN (2.1)

However, an inherent limitation of the raw dot product arises from its bias towards longer
vectors. Vector length, defined as the magnitude of a vector 2.2, influences the dot product.
Longer vectors, often associated with more frequent words, tend to have higher values in each
dimension due to their increased co-occurrence with other words and higher co-occurrence
values [16].
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2 Technical Foundation

magnitude(a) = |a| =

√√√√ N

∑
i=1

a2
i (2.2)

To address this issue, a normalization step is introduced to the dot product to account for
vector length. This normalization involves dividing the dot product by the lengths of the
two vectors being compared 2.3. By normalizing for vector length, cosine similarity offers a
more balanced and frequency-independent measure of similarity, allowing for more accurate
comparisons between words or vectors in NLP applications [16].

a · b = |a||b|cosθ

a · b
|a||b| = cosθ = cosine similarity (2.3)
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3 Related Work

Although there exist methods that are related to our research, we may not necessarily
incorporate them into our method. These methods have similarities to our ideas but were
deemed incompatible or deviated too much from our approach. However, they are still
valuable for readers to gain insights into different methodologies and research in the field.
In the subsequent sections, we will provide a more detailed description of some of these
methods. This will allow readers to delve deeper into the methods that are related to our
research, despite not being directly integrated into our own methodology.

3.1 Non-Taxonomic Relation Extraction

Authors Nabila et al. [17] developed a method that revolves around identifying and extracting
non-taxonomic relations from domain texts, and they achieve this through a series of steps as
follows:

1. Concept Extraction: The process of concept extraction comprises several key tasks.
Firstly, text preprocessing involves performing PoS tagging to assign word types and
eliminating stop words using Brill’s Rule-based PoS tagger [18]. Secondly, morphological
analysis is employed to normalize word forms and reduce dissimilarity. Thirdly, relevant
terms are identified using the tf-idf metric, which assesses their importance within the
text domain. Moreover, dependency triples generated by MINIPAR shallow parser [19]
help determine the subjects and objects of sentences. By matching the identified subjects
and objects with the relevant terms, the concepts for the text domain are established.

2. Predicate Identification: Text documents undergo preprocessing steps, followed by
the elimination of non-domain-related verbs (is, do, has, have,...etc) using a stop word
list. The remaining verbs are considered as predicates, which are grouped based on
similar meanings using WordNet. Sentences are represented as "predicate (subject,
object)" or p(s, o), where p represents a predicate, s represents a subject concept, and o
represents an object concept. The extracted rules are organized into the PS set and PO
set, containing information about predicate subjects and predicate objects, respectively.

3. Concept Pair Identification: In the concept pair identification step, concept pairs are
generated based on the appearance of predicates. Each group of predicates in P is used
to extract rules from PS and PO. The concepts extracted from PS are collected in Snew,
while the concepts from PO are collected in Onew. The most frequent concepts in Snew

and Onew are selected as concept pairs. The set of concept pairs, q, is therefore defined
as the Cartesian product of Snew and Onew: q = Snew × Onew.

8



3 Related Work

4. Relation Extraction and Labeling: In this step, a list of concept pairs is generated based
on groups of predicates with similar meanings. Each concept pair may have multiple
predicates associated with it. The goal is to select the most suitable predicate to label
the semantic relationship between each concept pair. The suitability is determined by
the predicate’s degree of support count, which is defined as:

sprt(q → p) = sprt(S → p) + sprt(O → p)

=
|s ∪ p|

R
+

|o ∪ p|
R

Where q is the concept pair containing Subject S and Object O, p is the predicates
extracted from rules in PS and PO, s and o are elements that appear in the Subject set S
and Object set O respectively, and R is the total rules count.
The predicate(s) with the highest degree of support count are considered as suitable
relationships for the concept pair. If multiple predicates have the same highest degree
of support count, they are all considered as suitable relationships for that concept pair.

3.2 OntoGain: Unsupervised Ontology Acquisition from Text

Authors Drymonas et al. introduce the OntoGain system [20], which aims to acquire ontolo-
gies from unstructured text in an unsupervised manner.

The methodology of OntoGain involves several key steps. The first step is preprocessing,
where the OpenNLP suite of tools [21] is used for tokenization, PoS tagging, and shallow pars-
ing. Additionally, the WordNet Java Library is utilized for acquiring word lemma information.

The next step is concept extraction, where OntoGain employs the C/NC-value method
for extracting multi-word and nested terms. This approach initially selects noun phrases
through linguistic filtering and then uses statistical measures such as C-value and NC-value
to determine the candidate noun phrase termhood. These measures are defined as follows:

• C-value: C-value is calculated as the ratio of the cumulative frequency of a word
sequence in the text to the frequency of occurrence of this sequence as part of larger
proposed terms in the same text. It captures the nested nature of multi-word terms.

• NC-value: NC-value refines C-value by assigning additional weights to candidate terms
that tend to co-occur with specific context words. It takes into account the co-occurrence
patterns of terms.

Once the concept extraction is completed, the taxonomy construction phase begins. Onto-
Gain employs two methods for unsupervised taxonomic relation acquisition: agglomerative
hierarchical clustering and formal concept analysis (FCA). Hierarchical clustering involves
merging similar clusters based on term similarity. The similarity between two clusters is
typically computed using a similarity measure such as the group average method [22], which
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calculates the average similarity across all pairs of concepts within the two clusters.

FCA [23] is another approach used for taxonomy construction [24, 25]. It associates objects
(extracted multi-word terms) with their attributes (associated verbs) based on the syntactic
dependencies analysis. This relationship is represented using a formal contexts matrix, which
serves as input to the FCA algorithm.

The final step is non-taxonomic relation acquisition, where OntoGain explores two ap-
proaches: association rules and a probabilistic algorithm. Association rules are generated
using the generalised association rules algorithm, enhanced with more general terms based
on the built taxonomy [26]. The predictive apriori algorithm implementation is used to
evaluate each rule based on predictive accuracy, which considers support and confidence.

The probabilistic algorithm, on the other hand, relies on conditional probability measures
to select the most appropriate non-taxonomic relationships. Conditional probability is esti-
mated by considering the frequency of a dependency relation and propagating it through the
respective super concepts in the taxonomy [25].

3.3 Keyphrase Matching and Coreference Resolution

Authors Cattan et al. propose a novel system for evaluating and modeling cross-document
coreference resolution [27]. The system addresses the inconsistencies and limitations of
existing evaluation protocols and proposes a practical evaluation methodology.

The presented evaluation methodology focuses on raw text input and excludes gold mention
annotations and singleton clusters. Instead of relying on gold mentions, the system evaluates
coreference clustering based on predicted mentions [27]. This approach provides a more
realistic and challenging evaluation, simulating real-world scenarios. Singleton clusters,
which are not relevant for coreference resolution’s downstream purposes, are omitted from
the evaluation to avoid biasing the results towards models that excel at detecting mentions
rather than linking them.

To standardize the evaluation process, the methodology introduces topic and corpus level
evaluations. The corpus level evaluation assesses sets of documents without specific topic
information, making it suitable for datasets lacking document categorization. In the topic
level evaluation, each gold topic is evaluated separately, including challenging cases with
lexical ambiguity. This setting reflects real-world scenarios where documents are initially
collected at the topic level.

To establish baseline results, the paper presents an end-to-end cross-document coreference
model inspired by the successful e2e-coref model used for single-document coreference [28].
The model integrates mention detection and coreference link prediction and addresses the
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challenge of ordering in the multiple-document setting using an agglomerative clustering-
based approach [29, 30, 31, 32].

During training, the model encodes each document separately using RoBERTaLARGE [33].
Long documents are divided into segments, and mention scoring is employed to select the
highest-scoring spans. The mention scorer is pre-trained on gold mention spans. The model
compares mentions across all documents using a pairwise scorer, training the system using
binary cross-entropy loss to optimize the likelihood of correct antecedents.

The paper further expands on the implementation details by introducing topic-level process-
ing, which is performed separately for each topic. It utilizes gold topic segmentation during
training and employs a clustering approach during inference when the number of topics is
unknown.

In addition to the aforementioned details, the paper presents experimental results demonstrat-
ing the effectiveness of the proposed evaluation methodology and the end-to-end coreference
model. The experiments showcase the system’s capability to handle cross-document corefer-
ence resolution challenges and provide insights into its strengths and limitations.

3.4 Taxonomy Construction & TaxoGen

The TaxoGen method [34] is introduced by authors Zhang et al. for unsupervised topic
taxonomy construction, which is the process of organizing terms into a hierarchical structure
that represents conceptual topics. The method aims to address the limitations of existing
pattern-based approaches by considering the topical proximity and semantic correlations
among terms.

The overall process of TaxoGen involves embedding concept terms into a latent space and
using these embeddings to recursively build the taxonomy. The construction starts with a
root node representing the most general topic for the given text corpus. Fine-grained topics
are generated level by level through top-down spherical clustering. The construction process
continues until a maximum number of levels is reached.

The adaptive spherical clustering module in TaxoGen is responsible for splitting a coarse
topic into fine-grained ones. It utilizes the spherical K-means algorithm[35], which groups
term embeddings into clusters based on their similarity in embedding directions. The center
direction of a topic acts as a semantic focus, and the terms fall around it to represent coherent
semantic meaning.

However, two challenges need to be addressed during the recursive construction process.
First, not all terms in a topic should be allocated to child topics, as general terms should
remain in the parent topic. Second, global term embeddings learned on the entire corpus
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may not capture subtle term semantics as the construction moves to lower levels. To tackle
these challenges, TaxoGen introduces the adaptive clustering and local embedding modules.

The adaptive clustering module iteratively identifies general terms and refines sub-topics by
excluding general terms from the clustering process. This improves the clarity of sub-topic
boundaries and enables the detection of additional general terms. The representativeness of a
term for a sub-topic is measured based on its popularity (frequency within the sub-topic’s
documents) and concentration (relevance to the sub-topic compared to sibling topics).

The local embedding module aims to enhance the discriminative power of term embed-
dings at lower levels of the taxonomy. It learns local term embeddings specific to each topic
being split. Two strategies are employed to create a sub-corpus relevant to a topic: clustering-
based and retrieval-based. The SkipGram model [14] is then applied to the sub-corpus to
obtain tailored term embeddings for splitting the topic.

By combining adaptive spherical clustering and local embedding, TaxoGen constructs topic
taxonomies that capture topical proximity and semantic correlations among terms. Experi-
mental results on real datasets demonstrate the effectiveness of TaxoGen compared to baseline
methods.

In summary, TaxoGen is an unsupervised method that leverages term embeddings and
hierarchical clustering to construct topic taxonomies. It addresses the challenges of term allo-
cation and discriminative power in the recursive construction process, resulting in improved
taxonomy quality.

3.5 Ontology Construction

3.5.1 The RENT Algorithm

The RENT algorithm as described by authors Kaushik et al. is designed for automatic term
extraction [36]. This algorithm focuses on extracting relevant terms from agricultural text
using domain-specific patterns expressed as regular expressions.

To initiate the process, twenty carefully selected patterns are employed based on the analysis
of over 1000 pages of agricultural text. These patterns have been curated by experts in the
field and were derived from various agricultural handbooks and websites.

The algorithm first extracts candidate terms by applying the regular expressions to the
text. The extracted terms are then assigned weights according to certain assumptions. Nouns
are given preference over other words that satisfy the same patterns, high-frequency non-stop
words are considered significant, and words appearing with multiple patterns receive higher
weights.
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Although the initial set of candidate terms may include irrelevant terms, a manual in-
spection process is conducted to remove them. Due to the absence of a suitable threshold
value for automated segregation, manual intervention is necessary to ensure the accuracy of
the extracted terms.

The algorithm then expands the obtained vocabulary by extracting composite terms, which
consist of multiple words (up to three words in length). The decision to set the length
threshold at three was made through manual inspection and reference to AGROVOC, an
agricultural thesaurus [37].

To extract composite terms, the algorithm employs linguistic filters based on combinations of
parts-of-speech. These filters include various noun combinations (NNP, NNP), (NNP, NNS),
(NNP, NN), (NNS, NNS), (NN, NN), (NN, NN, NNS), and (NN, NN, NN). Additionally,
adjective-noun combinations (JJ, NNP), (JJ, NN), and (JJ, NN) are used. Here, N, J, P, and S
stand for noun, adjective, preposition, and subordinating conjunction, respectively.

Composite terms that include at least one constituent word present in the list of candi-
date terms are considered valid and included in the final list of terms generated by the
algorithm.

3.5.2 HCHIRSIM Algorithm

The HCHIRSIM (Hybrid Chir-Statistic and Similarity) algorithm [38] aims to construct an
ontology by identifying representative concepts and relevant websites for a specific domain.

According to B. Frikh and A. S. Djaanfar, the algorithm begins by analyzing a large number
of websites through a k-means clustering algorithm to create initial clusters. This helps in
organizing the data based on similarities. Next, an initial keyword is chosen to represent
the domain, along with predefined parameters that guide the search and concept selection
process [39].

Candidate concepts are extracted by examining the neighborhood of the initial keyword.
Words appearing before and after the keyword are considered as potential concepts. For each
candidate concept, a score S(w) is calculated using a specific measure, which helps in assess-
ing its importance or relevance. The candidate concepts are then sorted in descending order
based on their S(w). The top l concepts with the highest scores are selected from the sorted list.

These selected concepts are incorporated as classes or instances into the ontology. Ad-
ditionally, the URLs of the websites from which these concepts were extracted are recorded
for reference. For each concept incorporated into the ontology, a new keyword is generated
by combining it with the initial keyword. This process is recursively repeated until a desired
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depth level is reached or no further results are found.

Finally, a refinement process is performed to improve the taxonomy’s structure, ensuring a
more compact representation and eliminating redundancy.
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In this chapter, we discuss how we create our ontology of NLP concepts out of a dataset
of research papers and based on the foundations set by Klimek’s work [3]. The process is
described in four parts. First, we describe how we choose the hand-picked concepts and
relations that belong in the upper levels of our hierarchy. Next, we explain how we validate
our keyphrases before further processing. After that, we delve into the ways we can combine
similar keyphrases. Further, we explain how we infer hierarchical relations between our
concepts. Finally, we show how we infer more complex relations between these concepts.

4.1 Manual Taxonomy Construction

The top layers of a taxonomy are a user’s first point of interaction with the navigation of
a complex hierarchy. An unclear high-level layer can have ripple effects into subsequent
interactions and cause confusion and miscommunication, as each concept in a taxonomy is
dependent on its predecessors located in previous layers.

Therefore, In order to ensure the quality of navigation for the users of our ontology, we
decide to manually define the top levels of the hierarchy, and only use automated methods to
extract relations in the deeper levels of the hierarchy. This approach is inspired by [40], who
manually defined the top two levels of concepts in their hierarchy.

The results of the previously built taxonomy [3] show that while using these automated tools
for hierarchy construction is convenient, they can generate faulty or less-than-ideal relations
between concepts. Therefore, the manually defined layers are there to ensure correctness and
reliability in the taxonomy’s critical entry point.

The challenge in this method is finding the ideal candidates from a broad spectrum of
NLP topics to be chosen as our top-level concepts. We comb through the following sources of
information to find these topics:

• The Computer Science Ontology (CSO) is a comprehensive research categorization sys-
tem in the field of Computer Science. It was created using the Klink-2 algorithm, which
analyzed a dataset of 16 million publications. CSO combines semantic technologies,
machine learning, and external knowledge sources. Experts also manually refined some
relationships during the preparation of surveys. CSO covers various research areas,
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including its primary root in Computer Science, as well as secondary roots like Lin-
guistics and Geometry. It offers benefits over manual categorizations by characterizing
higher-level research areas and allowing easy updates with new publications [41].

• The Association for Computational Linguistics (ACL) conferences are prominent events
in natural language processing and computational linguistics. They bring together
researchers, practitioners, and industry professionals to present advancements and dis-
cuss applications in language-related research. With research papers, keynote speeches,
workshops, and tutorials, ACL covers topics like machine translation, sentiment analysis,
information extraction, and dialogue systems. These conferences foster collaboration,
disseminate knowledge, and drive innovation in computational linguistics. The topics
covered in previous ACL conferences (for instance Dialog and Interactive Systems in
ACL 2021) were used as our top-level concepts [42].

• By examining multiple papers (e.g. [43, 44, 45]), a comprehensive collection of NLP-
related terms is gathered, which aids in understanding the breadth and depth of the
field. These terms may include various NLP tasks such as sentiment analysis, machine
translation, named entity recognition, and more. Additionally, they could cover different
methodologies, such as neural networks, statistical modeling, and rule-based systems.
Overall, the collected terms provide a valuable resource for exploring and categorizing
the multidimensional landscape of NLP research.

Following this, we build a prototype taxonomy with two to three layers beneath the root node
of ‘NLP’. Since this step primarily depends on conjecture, additional manipulations need
to be made to the taxonomy in order for it to fit the ideal standard. Therefore, we pass the
taxonomy through several qualitative testing processes with researchers in the NLP domain
to ensure the terms are approved by experts in the field (the full description of this process
can be found in 5.1).
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Figure 4.1: First prototype of the top-levels taxonomy.
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Eventually, we reach a final prototype of the taxonomy that satisfies the largest common
denominator of the researchers’ expectations.

Figure 4.2: Snippet from the final prototype of the top-levels taxonomy.
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4.2 Keyphrase Validation

For our intents and purposes, whereas a keyword consists of one token, a keyphrase may
consist of several. Keyphrases represent important or relevant terms in a paper, and they
are used as the basis from which we build our ontology [3]. We rely on the existing work
regarding keyphrase extraction. Instead, our work aims to add a post-processing step in
the keyphrase extraction module. This new module is inspired by the work from [46], and
aims to ensure that the keyphrases we process are of higher quality and facilitate further
processing. We call the ‘Keyphrase Validator Component’, and comprises of three functions:

• First, it trims all keyphrases that include acronyms (e.g: ‘machine learning (ml)’ becomes
‘machine learning’) and that end or begin with any of the following punctuation marks:
!#$% ∗+, . :;<=>?@[]̂|()/{}\~.

• Second, it discards keyphrases that still contain any of those same punctuation marks
that remain after the first step. We also discard keyphrases that start with a number or
contain only one character.

• Third, for keyphrases that start or end with a hyphen, it extends the keyphrase to
encapsulate the missing attached tokens if they exist, and discards them otherwise.

• Fourth and last, the information content (IC) score of each keyphrase is retrieved. This
score is representative of how specific or generic a keyphrase is. We retrieve our score
based on Wordnet’s SemCor corpus, and discard any keyphrase which is deemed too
generic and falls below our threshold of 10 [46].

4.3 Concept Deduction from Keyphrases

With a list of keyphrases that have been extracted, cleaned, and filtered, we may still have
keyphrases that are similar in nature and refer to the same meaning or concept. Thus, we
need a reliable method to merge these keyphrases so that they are embodied by the same
concept.

We cannot use simple means to compare semantic similarities of keyphrases in isolation with
the use of tools such as WordNet similarity measures, since they consider only word-level
semantics and relationships, and fail to capture the nuances of the keyphrase. For example,
the keyphrases ‘bank’ and ‘branch’ could be interpreted in the domain of banking institutes
and locations, or they could refer to riverbanks and tributaries.

Though there already exists a concept merging module based on the BERT-based Lexi-
cal Substitution (BERT-LS) method [3], the results can vary in coherence. Therefore, we
present three additional approaches for deducing concepts.
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4.3.1 BART-Based Lexical Substituion

As mentioned, the BERT-LS method currently implemented has its shortcomings. It specif-
ically struggles when it comes to multi-token keyphrases in two ways. First, some words
could be represented with more than one token, and since BERT operates on a word-piece
basis, only the largest word-piece is considered. The other problem lies with the processing of
multi-word keyphrases. In such cases, the current implementation applies BERT-LS to gener-
ate alternative tokens for each word, and ranks the mean scores of the various combinations
of tokens generated for the final substitutes. Therefore, if a keyphrase consisted of 3 tokens
(such as Lexical Sentiment Analysis), it could only generate substitutes that also consisted of
3 tokens [3, 47].

The BART-LS (Bidirectional Autoregressive Transformer for Lexical Substitution) approach is
an alternative method for generating substitutes for keyphrases. It can be viewed as a more
generalized version of BERT-LS. BART is a denoising autoencoder built with a sequence-
to-sequence model. It pre-trains the model combining Bidirectional and Auto-regressive
Transformers. This pre-training task consists of corrupting an original document with random
noise and then the model is trained to reconstruct the original text [48].

BART offers flexibility by allowing arbitrary transformations on the input text, including
changes in length. Different noising approaches were tested and evaluated, finding the best
performance by randomly shuffling sentence order and using a novel in-filling scheme where
random lengths of a span of text are replaced with a single mask token. This approach
improves the model’s understanding of sentence length and enables it to make longer-range
transformations [48].

BART demonstrates impressive performance in text generation tasks and shows strong
performance in comprehension tasks as well. It achieves comparable results to RoBERTa
when trained with similar resources on widely-used benchmarks such as GLUE and SQuAD.
Furthermore, BART sets new standards in abstractive dialogue, question answering, and
summarization tasks, surpassing previous approaches by a margin of 3.5 ROUGE on the
XSum dataset, which measures summarization quality [48].

In the context of concept deduction, BART-LS utilizes the ability of BART to generate
plausible alternative phrases or substitutions for a given keyphrase. Given a sentence with
a target keyphrase, we replace the keyphrase with a <mask> token and use BART to fill in
and try to replicate the original text, similarly to how the model was trained. Unfortunately,
in this scenario, BART has no point of reference for the original semantics of the masked
token. Therefore, inspired by the works of M. Pogoda, we insert the original keyphrase at the
beginning of the input text to provide BART with further context [49].
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E.g: We explore different Machine Translation approaches.
The input to the BART model becomes:
[Machine Translation] We explore different <mask> approaches.

However, since BART is trained on noising all the input, it can sometimes predict and
change parts of the sentence that go beyond just the masked portion. Therefore we filter the
outputs generated as such:

• We place a limit of up to five newly generated tokens.

• We discard newly generated keyphrases that fail the validation check as specified in 4.2.

• We discard generated outputs that made any changes to the input beyond just the
<mask> token.

Both the existing BERT-LS and new BART-LS methods rely on generating synonyms or
substitutes to the keyphrases. The amount of overlap between the substitutes of different
keyphrases determines whether they are considered the same concept. In the previous
implementation, this percentage was chosen to be 5%, as higher percentages proved ineffective
in merging any keyphrases [3]. However, as our method generates more substitutes for each
keyphrase on top of the synonyms already generated with BERT-LS, we increase this value to
10% after experimenting with different percentage thresholds.

4.3.2 SciConceptMiner Approach

In this approach, we leverage the use of online documentation of NLP topics to determine
whether different keyphrases should refer to the same concept. We adapt an approach
detailed by Shen et al. that links concepts together based on their web search relevance. The
Bing Web Search API is utilized to retrieve the search results [50, 51].

The approach examines the overlap in the top search result URLs between pairs of keyphrases.
If there is a substantial enough overlap, it indicates that the candidates are synonymous with
the same concept. For our purposes, we retrieve the top 30 results, and place an overlap
threshold of 50%.

In order to ensure the quality of the results, an allowed-list is employed [50]. Only the
results originating from reputable academic domains listed in the allowed-list are accepted.
In addition, we amend each search query to include the terms ‘in NLP’ appended at the
end of the keyphrase to focus the webpage results. This ensures that keyphrases won’t have
false-positives overlapping in domains unrelated to NLP or from online dictionaries that we
find unsuitable. The list of allowed domains can be seen as follows:
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• Wikipedia.org

• Kaggle.com

• GitHub.com

• Spacy.io

• Nlp.johnsnowlabs.com

• Medium.com

• Towardsdatascience.com

• Pub.towardsai.net

• Kdnuggets.com

• Geeksforgeeks.org

• Datascience.stackexchange.com

• Paperswithcode.com

• Pytorch.org

• Arxiv.org

• Researchgate.net

• Aclanthology.org

• Huggingface.co

• Microsoft.com/en-us/research

• Ai.facebook.com

• Ai.google

• Allenai.org

• Amazon.science

• Dl.acm.org

• Ieeexplore.ieee.org

• Stanfordnlp.github.io/CoreNLP

• Nltk.org
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However, a major drawback of this approach is the limitations of the Bing Web Search API.
For research purposes, we use API’s free subscription tier which limits search requests to 3
per second, and up to 1000 requests a month. In our implementation, we utilize this method
for only as far as the specified API key is valid before it terminates [52].

4.3.3 Sentence Transformers Merging Approach

Considering that our keyphrases are extracted from a corpus of papers related to the field of
NLP, if two keyphrases share a token in common and their embeddings have high cosine-
similarity, even in isolation of their context, then we hypothesize that the likelihood of them
being connected to the same concept is high.

We base this principle on the works of Dessí et al. We construct an index of tokens that link
together all keyphrases containing that same token. Any two keyphrases are compared if
they share at least one token in common. We do this by encoding the keyphrases using the
paraphrase-distilroberta-base-v2 model from SentenceTransormers framework [46].

The paraphrase-distilroberta-base-v2 transformer model is a pre-trained language model
specifically designed for generating paraphrases of input sentences and is based on the
distilroberta-base architecture. The distilroberta-base model is a smaller and faster version
of the RoBERTa model, which itself is a robust transformer-based architecture that has been
trained on a large corpus of text data [53, 54].

If the cosine similarity of these keyphrases is greater than a specified threshold (we choose
this similarity threshold to be ≥ 0.9 as it yielded the best results, and aligns with the findings
of Dessí et al.), then these keyphrases are merged [46].

As an example, if we have the keyphrases Emotion Detection and Emotion Recognition,
then these values will be linked to the key ‘Emotion’, and since their cosine-similarity is at
least 0.9, these keyphrases are merged. However, if we also have the keyphrase Sentiment
Detection, then it is linked to Emotion Detection with the key ‘Detection’, and subsequently
merged if their cosine-similarity meets the threshold. Thus, all three keyphrases will be
merged into one concept.

4.4 Construction of Concept Hierarchy

With our keyphrases merged into concepts, our next step is to construct taxonomic relations
between these concepts in order to form our hierarchy. The output from this step is an acyclic
directed graph where each vertex V represents a concept and each edge E(V1, V2) represents a
taxonomic relation between two vertices, V1 and V2, where V1 is a parent of V2. A taxonomic
relation in a hierarchy denotes one concept as broader or encompassing of another. We choose
our graph to be acyclic because we want the user to delve deeper into a topic as they explore
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our hierarchy and avoid falling into repeating loops.

As specified in Klimek’s paper [3], we consider two types of taxonomic relations:

• A Hypernym-Hyponym relation, where one concept, the hyponym, is a type or instance
of another, the hypernym. As an example, the concept ‘Cat’ is a hyponym of ‘Animal’.

• A Holonym-Meronym relation, where one concept, the meronym, represents a part or
component of the meronym. As an example, the concept ‘Leaf’ is a meronym of ‘Tree’.

By incorporating these taxonomic relations into our hierarchy, we create a comprehensive
framework for navigating and exploring the interconnected concepts in a logical and organized
manner.

4.4.1 String Inclusion Approach

This is a straightforward method proposed by Tuan et al. for determining taxonomic relations,
and it involves testing string inclusion. This means that when one term is included in another
longer or more specific term, we can make an educated estimation about a parent-child rela-
tion existing between the two. For instance, if the term "Machine Translation" is a substring
of "Neural Machine Translation", we can infer that the former is a hypernym of the latter [55].

We use Tuan et al.’s enhancement of this idea, the SIWN algorithm (String Inclusion with
WordNet). This method leverages WordNet and synsets to expand on the string inclusion
idea. (refer to section 2.1 for an explanation of synsets) [55].

• We define W1 ≫ W2 to mean that W2 is a direct or inherited hyponym of W1, according
to WordNet. This is determined if a synset of W1 is a direct or inherited hypernym of
W2.

• We define W1 ≈ W2 to mean that W1 and W2 are considered similar according to
WordNet. This is determined if W1 and W2 contain a synset in common.

Given concepts C1 and C2, we denote K1 ∈ C1 to be any keyphrase that has been merged to
form C1, and similarly, K2 ∈ C2. For any combination of K1 and K2, we examine each word
W1 in K1 from left to right. Our algorithm checks for W1 if there is a corresponding word
W2 in K2 such that W1 ≫ W2 or W1 ≈ W2. We conclude that K1 is a hypernym of K2 (and
therefore C1 is a hypernym of C2) if every word in K1 has a corresponding word in K2 such
that there exists at least one ≫ relation.

4.4.2 Weighted Ensemble Approach

Looking at Klimek’s hierarchy construction results, we see that the Lexical Syntactic Method
bears some opportunity for improvement. We take inspiration from Tuan et al.’s Lexical-
syntactic Pattern method and insert new patterns into our existing implementation to capture
more instances of hierarchical relationships [55]. The new rules are as follow:
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1. KEYPHRASE is (a|an) KEYPHRASE

2. KEYPHRASE is a (kind|type) of KEYPHRASE

However, since we value a high quality resulting ontology, we attempt to supersede the
best results presented in the current implementation by combining our three hierarchy
construction approaches in an ensemble. We place equal weight on each of our methods and
only pick the taxonomic relations that have been extracted by at least two out of our three
methods: Subsumption method, Lexical Syntactic Method, and String Inclusion Method.

4.5 Extraction of Ontological Relations

At this point, we have a taxonomic representation of NLP concepts, containing simple parent-
child relationships between them. The graph specified in section 4.4 captures the hierarchical
structure of concepts. However, to enrich our ontology further, we recognize the need to
incorporate non-taxonomic relations. These relations are denoted by triples (S, P, O) belong-
ing to the set T where T is a subset of E, S represents the subject belonging to the set V, P
signifies the predicate, and O denotes the object, also belonging to the set V. By incorporating
these non-taxonomic relations, we can capture a broader range of semantic associations and
dependencies within the NLP domain.

In this context, a predicate refers to the verb or relational term that connects the subject
and object within a triple. It represents the action or relationship expressed by the triple.
For example, in the triple (Semantic Search, uses, Text Representation), "uses" acts as the
predicate, indicating the usage relationship between the subject "Semantic Search" and the
object "Text Representation".

We employ two main methods for extracting such triples, the Dependency Tree Paths Based
Approach, and the Part-of-Speech Based Approach. Both rely on the use of the Stanford
CoreNLP module, which is a widely used JVM-based toolkit in core natural language analysis
developed by Stanford University. It provides a wide variety of text processing functionalities
such as PoS, Named-Entity Recognition (NER), Syntactic Parsing, Coreference Resolution,
Sentiment Analysis, Dependency Parsing and more [10, 46].

4.5.1 Dependency Tree Paths Based Approach

This approach is based on the Stanford CoreNLP Dependency Parser. It aims to extract
meaningful triples from sentences by leveraging pre-defined paths on dependency trees.
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Figure 4.3: Example of Stanford CoreNLP Dependency Parser.

To identify frequently occurring and high-quality paths, a representative sample of scientific
papers was utilized by Dessí et al. This sample was employed to construct a collection
of dependency trees (DT) along with associated concepts for each tree. By examining the
shortest paths within the dependency trees, which included at least one verb between the
tokens of a concept pair, the authors sought to identify relationships between these concepts.
The 50 most frequently occurring shortest paths were considered as potential candidates for
meaningful paths, capable of capturing text fragments that could be transformed into triples
for integration into an ontology or knowledge graph (KG) [46].

In order to assess the validity of the candidate paths, four researchers specializing in Computer
Science manually annotated 20 triples for each path. Through a meticulous evaluation process,
the correctness of the extracted triples was determined. Paths that yielded a correctness rate
exceeding 60% were deemed as strong contenders, resulting in a final selection of 12 paths [46].

The twelve dependency tree paths deduced by Dessí [46] to be ‘good paths’ are:

1. ’nsubj’, ’obj’: The subject of the sentence is connected to the direct object through a
verb.

2. ’acl:relcl’, ’obj’: An adjectival clause modifies the object of the main clause.

3. ’nsubj’, ’obj’, ’conj’: The subject and the direct object are connected through coordina-
tion, indicating multiple subjects or objects in the sentence.

4. ’conj’, ’obl’, ’nsubj:pass’: Two elements are connected through coordination, with one
element being an oblique argument and the other being the passive subject of the verb.

5. ’acl’, ’obj’: An adjectival clause modifies the object of the main clause.

6. ’nmod’, ’nsubj’, ’obj’: A nominal modifier connects a noun phrase to both the subject
and the direct object of the verb.

7. ’obl’, ’nsubj:pass’: An oblique argument is connected to the passive subject of the verb.

8. ’nsubj’, ’obj’, ’nmod’: The subject and the direct object are connected to a nominal
modifier indicating a relationship with another noun phrase.

9. ’acl:relcl’, ’obl’: An adjectival clause modifies an oblique argument.
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10. ’obl’, ’acl’: An oblique argument is connected to an adjectival clause.

11. ’nmod’, ’obj’, ’acl’: A nominal modifier connects a noun phrase to the object of the verb,
and an adjectival clause further modifies the object.

12. ’acl’, ’obj’, ’nmod’: An adjectival clause modifies the object of the main clause, and a
nominal modifier connects another noun phrase to the modified object.

For our use case, when we input the sentence containing at least two keyphrases, each
belonging to a concept, the module builds the dependency tree and references the twelve
‘good paths’ to extract the relationships between any pair of keyphrases. We leverage frequent
paths on the dependency trees, and thus, identify prominent textual patterns to construct our
triples.

4.5.2 PoS Tag-Based Relationships Extraction Approach

This approach builds upon the work of Dessí et al., who introduced a simple but broader
method for triple extraction utilizing the Stanford CoreNLP PoS Tagger. The PoS Tagger is a
tool employed to assign Part-of-Speech (PoS) tags to each term in a sentence that contains at
least two keyphrases associated with different concepts. By leveraging PoS tags, this method
identifies verbs situated between pairs of concepts within a sentence.

Figure 4.4: Example of Stanford CoreNLP Part-of-Speech.

Specifically, given a sentence and the set of concepts C, the verbs V = v0, ..., vz occurring
between each pair of keyphrases (K1, K2)|K1 ∈ C1, K2 ∈ C2, C1 ̸= C2 are captured. These verbs
are then utilized to form triples < C1, v, C2 >, where v ∈ V. To mitigate potential noise, this
approach restricts the processing only to verbs between concept pairs that have a maximum
distance of 10 tokens between them. The output of this module is a collection of extracted
triples [46].

4.5.3 Relation Mapping

The previous two methods produce a wide variety of triples with predicates that can range
greatly in meaning. However, it’s also possible to have triples with similar meaning predicates
that can cause confusion in the ontology should they exist together. For example, the verbs
Apply, Employ, and Use all hold similar meanings and redundantly serve the same purpose.
In addition, it would be beneficial for the comprehension of the user if the ontological relations
present in the graph were focused to a limited set of verbs with clear and distinct meanings.

Therefore, we employ the solution proposed by Dessí et al. and choose to map all the
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verbs we encounter during parsing to a set of 38 accepted representative verbs [46]. These
verbs are:

uses, produces, provides, supports, proposes, base, improves, includes, identify, acquires,
adapts, analyzes, links, matches, manages, interacts, queries, guides, automates, lacks, limits,
affects, processes, contributes, causes, classifies, annotates, visualizes, predicts, standardizes,
learns, executes, outperforms, extracts, highlights, transfers, solves, discusses.

The original list of predicates also includes the verb "is", but we discard it since it rep-
resents a hypernym-hyponym relation which we have already extracted in the previous
modules. We also discard any triple containing a verb that doesn’t appear as one of the
mapped 464 verbs. The verb mapping (of 194 verbs) is originally based on a list compiled
by Dessí et al. who constructed it by employing a hierarchical clustering algorithm on the
Word2Vec embeddings of the verbs [56]. Within each cluster, the representative verb was
determined by selecting the verb closest to the centroid. This representative verb was then
assigned to all other verbs within the same cluster [56].

It was then extended with an additional mapping of 270 verbs using VerbNet. VerbNet
is a lexicon that organizes verbs into hierarchical classes that consist of a set of verbs based
on their syntactic and semantic information [46, 57].
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In this chapter, we present our results in evaluating the different methods introduced through-
out our ontology-producing pipeline. First, we look at the evaluation performed for the
manual taxonomy construction. Then, we investigate the new methods for concept merging
and how they compare to the existing implementation. Moreover, we do the same with the
new methods for hierarchy construction and how they compare to the existing implemen-
tation. And finally, we take a look at the newly added ontological relations extraction methods.

For all of our evaluations, we relied on user studies. Our participants consisted of seven
researchers that work within the field of NLP at Technical University of Munich (TUM).

5.1 Analysing the Manual Taxonomy Creation

The creation of the manual taxonomy was evaluated in two parts. First, it underwent an
iterative and qualitative evaluation process. Then, we performed a quantitative test to evaluate
the correctness and reliability of the final built prototype.

5.1.1 Qualitative Manual Taxonomy Construction Evaluation

As the hierarchy presented by us is ultimately meant to be utilized for research purposes,
our participants proved to be ideal candidates for influencing the construction of the manual
taxonomy. Therefore, when we were in the process of gathering requirements from our users
to be represented in our taxonomy, we held iterative tests, where changes were applied to the
taxonomy in between sessions.

These tests were semi-structured and qualitative in nature. Instead of collecting a strict
set of information, we held free-flowing discussions with guided questions and accompanied
by a presentation. The participants were asked about their general thoughts and opinions
on the taxonomy, as well as more detailed questions regarding topics they felt were missing,
misrepresented, superfluous, too vague, or too specific.

5.1.2 Quantitative Manual Taxonomy Construction Evaluation

Once we had formed our final prototype of the manual taxonomy, we interviewed each
participant once more. The participants were requested beforehand to prepare a list of 5
or more concepts in the domain of NLP. We confirmed and assured the presence of these
concepts in our taxonomy, and then met with the participant to observe how they navigated
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our graph to find each of their specified concepts. This made sure that they were familiar with
the topics they were looking for as they had requested them themselves. In our taxonomic
graph, the children of any concept vertex were collapsed, and the participant had to click
to expand and see the child concepts of the parent concept they visited. Every ‘visit’ or
‘expansion’ is considered one step for the purposes of our evaluation.

In this way, we were able to record the amount of steps it took for each participant to
reach the target concept in the taxonomy. In addition, upon finding the topic, the participants
were asked if they found the location of the concept correct, i.e. if they thought the concept’s
relation to the hierarchical structure was valid.

Table 5.1: Table comparing our resulting relation accuracy against that of previously used
methods [3].

Approach Relation Accuracy
Manual Taxonomy Creation 0.988
Subsumption Method, SCOPUS 0.860
TaxoGen, DBLP 0.775

As expected from a manually constructed taxonomy, the relation accuracy is near perfect,
especially when compared to the relation accuracy scores of automated implementations.
Though the metric used to measure the relation accuracy of the manual taxonomy is not the
exact same as the one used to measure the other automatic methods due to the nature of our
manual tests, they are close enough that we can make a fair comparison to decide that the
manually constructed taxonomy performs the best by far in terms of correctness.

We also note another score, the MAPE (Mean Absolute Percentage Error) score. MAPE
is a metric we use to note the reliability of our taxonomy by measuring the percentage of
error or ‘stumbles’ the user takes when navigating the taxonomy to reach the target concept.
The MAPE score is calculated using the following equation:

MAPE =
1
n ∑

|Total Steps Taken − Ideal # Steps|
Ideal # Steps

(5.1)

Where n denotes the amount of concept-finding tasks that were performed. The results can
be seen in figure 5.1.

Our MAPE score is 0.478, and we set this as a benchmark for future iterations of this
manual taxonomy to be compared to. If a manual taxonomy manages a lower score, then
their user is, on average, able to find and reach their target concept in a more reliable manner.
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Figure 5.1: Results of the quantitative manual taxonomy evaluation.
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5.2 Analysing Concept Merging Coherence

We evaluate our new methods for Concept Merging. As the existing implementation already
utilizes its own Concept Merging technique, we employ the same evaluation method as the
one used by Klimek [3].

For the user studies, it is explained that an evaluation method is used that was introduced by
Zhang et al. [34] called the term intrusion user study. In this test, we measure the coherence
of the concepts that we generate. We do this by sampling 30 random concepts generated by a
method. We then introduce an ’intruder’ keyphrase picked from a disconnected concept to
muddy the test data for every concept [3, 34].

Figure 5.2: Snippet of the sentence transformer results, with the final concept coherence at
the bottom (in %).

We set a task for our participants: for every concept, they must identify the intruder keyphrase
from a list of keyphrases that represent the same concept. If they are able to do so, then it
proves that the concept has a clear identity, and the correct keyphrases cohere to the same
meaning.

Table 5.2: Table comparing the concept coherence resulting from our different methods against
previously used ones [3]. TaxoGen results also included [34].

Approach Concept Coherence
BART-LS and BERT-LS, SCOPUS 0.816
Sentence Transformers, SCOPUS 0.981
SciConceptMiner, SCOPUS 0.988
BERT-LS, SCOPUS 0.747
TaxoGen, DBLP 0.728

Looking at the results presented in table 5.2, we can see that sentence transformers method
achieved a coherence score of 0.981, the BART-LS and BERT-LS achieved a coherence score
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of 0.816, and the SciConceptMiner achieved a coherence score of 0.988. These new methods
all outperformed existing solutions including the BERT-LS method with a score of 0.747 and
TaxoGen with a score of 0.728.

As a final note, Klimek acknowledges that while the TaxoGen method is run on a sepa-
rate dataset, we can still use its score values for comparison considering that SCOPUS and
DBLP have overlap in the computer science domain [3].

5.3 Analysing Taxonomic Relation Construction

We evaluate our new methods for the construction of Taxonomic relations. As the existing
implementation already utilizes its own Concept Merging technique, we employ the same
evaluation method as the one used by Klimek [3].

For the user studies, it is once again explained that an evaluation method is used that
was introduced by Zhang et al. [34]. In this test, we measure the accuracy of the relations
that we construct. We do this by sampling 30 random taxonomic relations generated by a
method [3, 34].

Figure 5.3: Snippet of the weighted ensemble results, with the final relation accuracy at the
bottom (in %).

Each participant described whether the relation was considered correct or false. With this
evaluation, we had five participants in total, and therefore, we chose a relation to be correct if
the majority voted as such.
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Table 5.3: Table comparing the relation accuracy resulting form our different methods against
previously used ones [3]. TaxoGen results also included[34].

Approach Relation Accuracy
String Inclusion, SCOPUS 0.667
Weighted Ensemble, SCOPUS 0.900
Lexical Syntactic Method, SCOPUS 0.440
Subsumption, SCOPUS 0.860
TaxoGen, DBLP 0.775

Looking at the results presented in table 5.3, we can see that the string inclusion method
achieved a relation accuracy score of 0.667 and the weighted ensemble method achieved a
relation accuracy score of 0.900. While the string inclusion method performed okay, it did not
surpass the existing subsumption method score. On the other hand, the weighted ensemble
method outperformed the existing solutions including the subsumption method with a score
of 0.860, the lexical syntactic method with a score of 0.440, and TaxoGen with a score of 0.775.

The note in section 5.2 regarding the differing dataset of TaxoGen still applies.

5.4 Analysing Ontological Relation Extraction

We evaluate our new methods for the extraction of the Ontological relations. This step has no
existing counterpart in Klimek’s implementation, but we employ the same evaluation method
as the one used in 5.3 due to the similarity of the nature of the evaluation [3].

Figure 5.4: Snippet of the dependency tree paths results, with the final relation accuracy at
the bottom (in %).
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We sample 30 random ontological relations generated by a method. Each participant described
whether the relation was considered correct or false. With this evaluation, we once again had
five participants in total, and therefore, we chose a relation to be correct if the majority voted
as such. We compare our results to the precision accuracy scores achieved by the OntoGain
paper which was explored in section 3.2 [20].

Table 5.4: Table showing the relation accuracy resulting from two of our methods. OntoGain
results also included [20].

Approach Relation Accuracy
Dependency Tree Paths, SCOPUS 0.533
PoS Parsing, SCOPUS 0.300
Association Rules Algorithm, CS Corpus 0.728
Probabilistic Algorithm, CS Corpus 0.617

Looking at the results presented in table 5.4, we can see that the Dependency Tree Paths based
method achieved a relation accuracy score of 0.533 and the PoS parsing method achieved a
relation accuracy score of 0.3. Both scores are lower than the benchmark set by OntoGain.

The note in the section 5.2 regarding the differing dataset also applies to OntoGain.
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Looking back at our initial objectives, we can consider the primary task of the thesis “How
do we deepen the hierarchical relationships between research concepts?” to be fulfilled. This
was done in several subtasks, which first involved using manual refinement to improve
top-level navigation for users. Our manual taxonomy construction showed to have a great
amount of success with our user studies, amounting to a 98.8% relation accuracy score. As
mentioned in section 5.1.2, this high score is expected when compared to automated methods,
but our score could also be influenced by another factor. Our taxonomy was evaluated by the
same participants that influenced the manipulation of the taxonomy throughout the iterative
qualitative testing process as described in section 5.1.1, and therefore, the score is biased to
tend higher.

The second subtask revolved around enhancing the existing concepts and relations through
automated refinement approaches. Our newly adapted concept merging methods are the Sen-
tence Transformers approach with a concept coherence score of 98.10%, the SciConceptMiner
approach with a concept coherence score of 98.89%, and the BERT-LS and BART-LS approach
with a concept coherence score of 81.67%. All three approaches yielded higher score results
for concept coherence than the existing implementation’s best score (which stemmed from the
pure BERT-LS approach, with a concept coherence score of x). The Sentence Transformers and
SciConceptMiner approaches proved to work with exceptionally high result scores, though
this comes with a caveat for each: the Sentence Transformers approach is only applied on
concepts that share at least one token in common, so if two concepts share the same meaning
semantically but have no common token, they are skipped in processing. On the other
hand, the SciConceptMiner approach shows great promise but is limited by the number of
free API calls allowed per month. Therefore, we recommend and use both the Sentence
Transformers approach and BERT-LS and BART-LS approach to merge concepts, and limit
the SciConceptMiner based on the API key utilized.

The other end of this subtask involves our newly developed taxonomic relation construction
methods. Our string inclusion approach achieved a relation accuracy score of 66.67%, while
our weighted ensemble approach achieved a relation accuracy score of 90%. The existing
implementation’s highest score achieved was with the subsumption method, with a relation
accuracy score of 86%. Our weighted ensemble approach surpasses this method, which is
expected, as it only includes relations that were detected through more than one method.

Our third and final subtask is the transition from a taxonomy to an ontology with more
complex relations. We introduce two methods for extracting non-taxonomic relations, the
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dependency tree paths approach which achieved a relation accuracy score of 53.33% and
the PoS parsing approach which achieved a relation accuracy score of 30%. We compare
these values to the highest score reached by the OntoGain system, which was 72.85%. Since
the PoS parsing approach did not perform well according to our expectations, we discard
its use and rely on the dependency tree paths approach. However, this still falls short of
existing implementations. This can be attributed to the fact that our system does not perform
extra validation steps on the extracted triples to check their correctness. Nevertheless, we are
still able to, on average, extract these triples to form the missing relations and complete our
ontology.
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7 Future Work

In this thesis, we provided a second step towards building an automated ontology from a
corpus of scientific publications. Whereas Klimek showed a first step towards this process
[3], we improved upon the areas of that paper that needed further investigation and imple-
mentation (namely the concept deduction and taxonomic relation construction modules) and
added new implementations (the manual taxonomy and non-taxonomic relation extraction
modules). In turn, our work needs to be further expanded on to fully realize the goal of the
project and create an automated high quality ontology of NLP concepts.

For our corpus of texts, we primarily relied on Klimek’s collection of papers from the
SCOPUS dataset [paper]. This proved to perform well for the collection of keyphrases, though
topics of the papers are slightly skewed towards the application of NLP topics in other
non-NLP domains and fields. This introduces a lot of unwanted keyphrases that sometimes
slip through the keyphrase filtering process. Therefore, it would be of interest to investigate
alternative datasets that are more focused on the studies of NLP topics themselves.

In addition, the quantitative manual taxonomy should be re-evaluated with a new set
of participants that are disconnected from the participants forming the qualitative evaluation
process. This would produce less biased results that could portray a more accurate reading of
the manual taxonomy’s reliability and correctness.

The biggest room for improvement lies in the non-taxonomic relations extraction step. Due to
time restraints, we only retrieved the triples of ontological relations and mapped them, but
did not perform any further validation to ensure their correctness, as suggested by Dessí et
al. [46]. This validation step could take into consideration the amount of times a triple was
extracted, and the number of methods that were able to extract it.
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